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J. Phys.: Condens. Matter 1 (1989) 4469-4472. Printed in the UK 

LETTER TO THE EDITOR 

Theory of the impedance of fractal interfaces 

J E Gols and W Geertsma 
Solid State Physics Laboratory, University of Groningen, Melkweg 1,9718 EP 
Groningen, The Netherlands 

Received 28 April 1989 

Abstract. In this Letter we present a study of the frequency dependence of the impedance 
( Z ( w )  CC (ioC)-q) of fractal models for the electrode-electrolyte interface. We will show 
that the Cantor bar model gives a fractional exponent 9 of this impedance for only a very 
limited range of parameter values while a model based on a Koch curve gives a fractional 
exponent over a large frequency range for a broad range of parameter values. 

For the impedance of a metal electrode-electrolyte interface one finds experimentally 
the following dependence: 

This relation holds over a broad frequency range ( W4-10 kHz). For more experimental 
details we refer the reader to Geertsma et aZ(1989). Recently the fractional exponent q 
of the frequency dependence of the impedance Z(w)  of a metal electrode-electrolyte 
interface has been the subject of a large number of theoretical studies. The purpose of 
this Letter is to report a study on the range of the exponent. 

Le Mehaute and Crepy (1983) were the first to propose a self-similar structure of a 
metal electrode-electrolyte interface. However, their analysis is rather vague about the 
structure of such an interface. Liu (1985) realised a self-similar interface based on a 
Cantor bar construction (figure l ( a ) ) .  Essentially it is a self-affine structure: the 
geometry of each stage exactly resembles the former one when scaled horizontally by a 
factor a. Therefore, the resistance of the electrolyte in the bars (black area) is increased 
by the factor a in every stage of branching. The interfacial capacitance at the lateral sides 
of the bars remains the same going from one stage to another (the capacitance of the 
horizontal parts is not taken into account because its contribution decreases fast when 
going from one stage to another). 

We (Geertsma et a1 1989) based our fractal interface model on the Koch curve which 
represents a cross section of the interface. A straight line is divided into three equal parts 
and the middle one is replaced by an equilateral triangle. This procedure is repeated for 
each line leading eventually to a fractal structure with one scaling factor bo = 3. In figure 
l(b) a cross section of the structure is given where again the black area represents the 
electrolyte wetting the irregular electrode surface. Going from one stage to another, 
only the interfacial capacitance is scaled by the geometrical scaling factor bo. 

We have shown that it is essential to take screening of grooves and bars into account. 
Screening of the electrical field is taken into account by means of an effective resistance 
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Figure 1. (a) Cross section of the elec- 
trode-electrolyte (black area) interface for 
a Cantor bar construction. ( b )  Cross sec- 
tion of the electrode-electrolyte (black 
area) interface for a Koch curve con- 
struction. 

and capacitance of the grooves or bars. We have argued that these effective resistances 
and capacitances also scale by a constant factor going from one stage of the construction 
to the next. These scaling factors incorporate pure geometrical factors and a factor 
accounting for screening. To discuss these two interface mbdels-the Cantor bar con- 
struction and the Koch curve construction-on an equal footing we have generalised the 
Cantor bar of Liu by including such screening effects. We will now discuss these two 
models in more detail. 

If we incorporate the fact that the shape of the grooves has a large influence on the 
local electrical field strengths inside the grooves, we can easily generalise the Cantor bar 
model. The scale factor b ( a 1 )  represents the scaling of the resistances due to the 
geometry as well as the screening of the local fields in the bars per stage, a is a similar 
scale factor for the capacitances and k ( 2 2 )  represents the branching of each groove 
from one stage to the next. One then finds for the impedance of the nth stage 

Z,(w) = R + l/[iwC + k/aZ,-l(wa/b)]. (2) 
In figures 2(a) and 2(b) we have plotted the regions for which equation (2) shows a 
fractional power-law behaviour independent of the frequency as a function of a and k ,  
respectively. In the shaded area the variation of q is at most 0.01. In the region between 
the hatched lines q is fractional but frequency dependent. We have checked the analytical 
expression as obtained by Liu (1985) for q valid in the low-frequency limit (oRC <c 1) 
as a function of a 

q = (In a - In k)/(ln a - In b) .  (3) 
This equation reduces to the one derived by Liu (1985) for b = 1 (no screening of the 
bars in the vertical direction). We found that equation (3) is valid for only a very small 
range of parameter values of a; namely a G 13 and for b approaching 1; for larger values 
of ‘a’ and ‘b’ the fractional exponent oscillates in the low-frequency region between 0 
and 2; a constant value for q as a function of frequency has not been found. From the 
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Figure 2. (a )  The frequency range of the fractional exponent p calculated from (2) (Cantor 
bar model) as a function of the screening parameter a (b/bo = 1, k = 5 ,  n = 10). The shaded 
area represents a variation in p of at most 0.01. Between the drawn lines q always lies 
between 0 and 1. ( b )  The frequency range of q calculated from (2) (Cantor bar model) as a 
function of the branching parameter k (a  = 10, b/bo = I ,  n = 10). The shaded area is as 
defined in (a) .  Between the drawn lines p always lies between 0 and 1. (c) The frequency 
range of p calculated from (4) (Koch curve model) as a function of a (b/bo = 1, k = 5 ,  n = 
10). The shaded area is as defined in (a).  Between the drawn lines p always lies between 0 
and 1. ( d )  The frequency range of 7 calculated from (4) (Koch curve model) as a function of 
k (a = 10, b/bo = 1, n = 10). The shaded area is as defined in (a). Between the drawn lines 
p always lies between 0 and 1. 

numerical study of this Cantor bar model it is clear that 7 is independent of the frequency 
over only a very limited frequency range for only a limited range of parameter values. 

Using the parameters a and 6 to represent both screening and geometrical effects for 
the resistances and capacitances, respectively, the interfacial impedance based on the 
Koch curve is given as 

Z, ' (w,  R ,  C) = ( k +  l ) / a Z n - , ( w a / 6 0 ,  R ,  C)  + k / ( R +  (a/2)Zn-1(wa/b,  R ,  C) ) .  (4) 

This equation holds for a generalised Koch curve (bo> 3; bo = k + 1). 
Figures 2(c) and 2 ( d )  show the results obtained by using equation (4). We find that 

the region where the exponent 7 is frequency independent is much broader for the Koch 
curve model than for the Cantor bar model. So, we conclude that, in agreement with 
experiment, an interface construction based on the Koch curve gives a much better 
description for the impedance than a construction based on the Cantor bar. 
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From equation (4) we obtain two solutions for the fractional exponent which are 
valid in different parameter ranges: 

qo = log{[k + 1 + 2k(bo/b)~0]/u}log[(k + l ) / a ]  ~ 3 3 k - t  1 (5) 

V l  = log[(k + WaI/log[(3k + 1 > / 4  a < k + l  (6) 

Equations (5) and (6) give a constant q for a S 80. The two regions of fractional 
behaviour for q are separated by an area without fractional power-law behaviour: a 
region where q is a decreasing function of the parameters a, k ( a  < k + 1) and a region 
where q is an increasing function of a ,  k (a  3 3k + 1). For details we refer the reader to 
Geertsma et a1 (1989). The same regions are found in figure 2(d ) .  

We have shown (Geertsma et a1 1989) that screening is essential for the fractional 
component to be constant over a broad frequency region for a large range of parameter 
values. When we ignore screening effects (a = 1 in the Koch model) and only vary the 
geometrical parameter bo,  the frequency range for which q is fractional and independent 
of frequency is very limited, as in the Cantor model. 

We have studied the Cantor bar model for various values of the parameters a and b 
and compared these results with those obtained for the Koch curve model. We found 
that, in the case of the Koch curve model, the frequency-independent range and value 
of the fractional exponent are in much better agreement with experiment than is the 
case with the Cantor bar model. 

References 

Geertsma W, Gols J E and Pietronero L 1989 Physica A at press 
Le Mehaute A and Crepy G 1983 Solid State Ionics 9-10 17-30 
Liu S H 1985 Phys. Rev. Left. 55 529-32 


